Skip to main content
Top
Published in: Journal of Coatings Technology and Research 2/2021

02-12-2020

Developing a new superhydrophilic and superoleophobic poly(4-(1-vinyl-1H-imidazol-3-ium-3-yl) butane-1-sulfonate): vinyl imidazole@Perfluorooctanoic acid@SiO2 coated stainless steel mesh for highly efficient, stable, and durable oil/water separation

Authors: Mohammad Reza Ghadimi, Roozbeh Siavash Moakhar, Setare Amirpoor, Mohammad Azad, Abolghasem Dolati

Published in: Journal of Coatings Technology and Research | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The design and development of efficient approaches for water–oil separation have had widespread interest. Most previously introduced techniques and materials used for development of the successful separation of oily wastewater could not answer all the desired demands, such as being efficient and environmentally and economically friendly. Therefore, in seeking a novel method capable of answering these expectations, surfaces with special wettability were introduced. A novel, reusable, and recyclable superhydrophilic and superoleophobic poly(Vsim-Vim)@PFOA@SiO2 nanocomposite-coated stainless steel mesh was synthesized through a facile preparation process. Since the most important factors of these coatings are their oleophobicity and hydrophilicity values, the water contact angle (WCA) and the oil contact angle (OCA) were measured. The coating indicated the excellent characteristics in which the results showed that WCA was 0°, while OCA was 142°, which confirmed remarkable superhydrophilicity and superoleophobicity, respectively. It is worth mentioning that the coating owes its surface behavior mainly to the finer size of mesh and formation of silica, which causes the higher roughness and better oleophobicity, reduction of the surface energy of the synthesized poly(Vsim-Vim)@SiO2 nanocomposite by PFOA, the formation of hierarchical micro-nanometer scale roughness structures on the coating surface, and stable adhesion of SiO2 nanoparticles into poly(Vsim-Vim). Eventually, superb oil/water separation efficiency of 95% with high stability was attained. This result implied that the fabricated coating is a suitable candidate for water–oil emulsion separation which can potentially be employed in green industrial applications. Also, we believe this approach provides a potential application in controllable oil/water separation in large volumes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
10.
26.
50.
go back to reference Zisman, WA, “Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution.” UTC, pp 1–51 (1964) Zisman, WA, “Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution.” UTC, pp 1–51 (1964)
Metadata
Title
Developing a new superhydrophilic and superoleophobic poly(4-(1-vinyl-1H-imidazol-3-ium-3-yl) butane-1-sulfonate): vinyl imidazole@Perfluorooctanoic acid@SiO2 coated stainless steel mesh for highly efficient, stable, and durable oil/water separation
Authors
Mohammad Reza Ghadimi
Roozbeh Siavash Moakhar
Setare Amirpoor
Mohammad Azad
Abolghasem Dolati
Publication date
02-12-2020
Publisher
Springer US
Published in
Journal of Coatings Technology and Research / Issue 2/2021
Print ISSN: 1547-0091
Electronic ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-020-00420-6

Other articles of this Issue 2/2021

Journal of Coatings Technology and Research 2/2021 Go to the issue

Premium Partners